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We consider the issue of whether complex numbers are necessary in the formulation of
quantum theory. We argue that their introduction is not forced on us by the dynamics,
but it is absolutely necessary in order to incorporate the observable properties of the
geometric phases that appear in interference experiments. This remark provides the
motivation for the construction of a histories-based axiomatic scheme for quantum
theory, in which phases are considered as primitive elements, on equal footing with
probabilities. This scheme reduces to standard quantum theory for systems characterised
by a background causal structure–however it may lead to a different description in the
domain of quantum gravity.
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1. INTRODUCTION

The fact that the formalism of quantum theory is phrased in terms of complex
numbers (rather than real ones) has always been a matter of speculation. Is the
use of complex numbers a mere mathematical convenience or does it signify
something deeper about the structure of quantum mechanics? It is often argued
that the introduction of complex numbers is forced upon us by the dynamical law,
namely Schrödinger’s equation

i
∂

∂t
ψ = − 1

2m
∇2ψ + V (x)ψ := Ĥψ. (1)

The presence of the i in the right-hand terms implies that the wave function cannot
be in general, real-valued, and for this reason it has to be postulated real-valued
from the beginning.

This argument, however, is not satisfactory. A complex vector space can
easily be interpreted as a real one, and a unitary transformation as an orthogonal
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one. One may split a complex wave-function into a real and imaginary part

ψ →
(

ψR

ψI

)
, (2)

and introducing the real-valued matrix J =
(

0 1
−1 0

)
we may write Schrödinger’s

equation solely in terms of real numbers

J
∂

∂t

(
ψR

ψI

)
= Ĥ

(
ψR

ψI

)
. (3)

Hence, the evolution law alone does not necessitate the introduction of
complex numbers. This may be seen, in particular, in Bohmian mechanics, in
which the evolution equation is cast is such a form that the complex struc-
ture of the Hilbert space can be ignored and is only employed for notational
simplicity.

The physical principle that makes the introduction of complex numbers nec-
essary is Born’s probability interpretation of the wave function: the probability
density |ψ(x)|2 is invariant under the U (1) transformation of ψ : ψ → ψeiφ .
Out of all a priori conceivable ways to construct a probability density out of
the wave function, quantum theory selects one that is characterised by an ad-
ditional symmetry. We shall argue that the presence of this symmetry is the
reason that complex numbers are necessary (if not indispensable) in quantum
theory.

Before proceeding further in this discussion we would like to remind the
reader of a relevant point. It is possible to formulate quantum mechanics in a real
Hilbert space: however, if one demands that the Heisenberg uncertainty relations
arise naturally in the theory, it is necessary that one introduces a complex structure
on the Hilbert space (Stueckelberg, 1960), effectively leading to a complex
Hilbert space.

2. GEOMETRIC PHASES

The above arguments suggest that the necessity of using complex numbers
in quantum theory arises as a consequence of the special probabilistic structure of
quantum theory, namely the fact that the evolution law is not linear with respect
to the probabilities, but only with respect to the system’s wave function. One
may respond, however, that irrespective of the way probabilities are defined in
quantum theory, at the end of the day all physical predictions are phrased in terms
of real numbers (e.g. event probabilities, mean values of physical observables,
or scattering cross-sections). The complex structure of quantum theory is not
manifested at the level of physical predictions.
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The answer to this objection is that complex numbers arise from the U (1)
symmetry characteristic of the quantum probability law, which is manifested
experimentally in the form of geometric phases. To see this one may consider the
two slit experiment. A source is prepared to emit particles in a given state ψ . The
particle beam is directed towards a wall with two slits in it, while a screen in which
the particles are detected is placed behind the two slits. If both slits are open then
the intensity of the particles recorded on the screen will exhibit a periodicity, that
is we shall determine an interference pattern.

The key point is that if we act on the particle beams as they cross the two
slits, the shape of the interference pattern will change. A typical example is the
Bohm-Aharonov effect (Aharonov and Bohm, 1959). Let us assume that in the
original two-slit experiment the state after the particles pass through the slits
is ψ = 1√

2
(ψL + ψR). The presence of a solenoid behind the slits will effec-

tively transform ψ into 1√
2
(ψL + eiθψR), in terms of a phase θ = q�, with q

the particles’ charge and � the solenoid’s flux. Hence if we compare the distri-
bution of particles detected in the screen in the experiment without the solenoid
|ψL|2 + |ψR|2 + 2Reψ∗

RψL with that in the presence of the solenoid |ψL|2 +
|ψR|2 + 2Reeiφψ∗

RψL we shall see a � dependent translation of the peaks and
lows of the interference pattern. The important point is that if we repeat this experi-
ment for different values of the flux, we shall see that the dependence of the particle
intensity on � is periodic, since � only appears in the form of eiq�. In other words,
the change induced to the interference pattern by changes of the external parame-
ters is subject to a U (1) symmetry (corresponding to the Bohm-Aharonov phase).

The Bohm-Aharonov phase is a special case of Berry’s geometric phase
(Berry, 1984); in the most general case it is defined as the holonomy of the natural
U (1) connection on the projective space of a complex Hilbert space (Anandan and
Aharonov, 1990; Simon, 1983). In this sense, the observation of geometric phases
(with their periodic behaviour) provides the most direct experimental evidence
that the complex numbers (or equivalently the U(1) symmetry) is a fundamental
ingredient of quantum theory.

It is important to emphasise that the geometric phase is a statistical object: it
is measured in terms of an interference pattern, which is present only when a large
number of particles (corresponding to a statistical ensemble are left to interfere).
If we carried out the experiment with single particle, there would be nothing to
measure.

A very general type of geometric phase that will prove particulary rele-
vant to our later discussion is the Pancharatnam phase (Pancharatnam, 1956). It
corresponds to the argument of the inner product between two states φ〉 and |ψ〉.
It can be determined through the following procedure

1. We prepare two systems in the states |ψ〉 and |φ〉.
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2. We perform on the beam corresponding to |ψ〉 the operation
|ψ〉 → eiχ |ψ〉 for a controlled value of χ .

3. We interfere the two beams to construct the beam |f 〉 = |φ〉 + eiχ |ψ〉
and measure its intensity I = 〈f |f 〉.

4. We repeat the experiment for the range of all values of χ and construct
the function I (χ ) giving the intensity of the measured beam as a function
of the external parameter χ . This equals

I (χ ) = 2|〈ψ |φ〉| cos(χ − arg〈ψ |φ〉) (4)

5. I (χ ) takes its maximum value for χ = arg〈ψ |φ〉. This value of χ is the
Pancharatnam phase between the two beams.

This procedure to measure the Pancharatnam phase has been performed in neutron
interferometry (Wagh et al., 1998). The difficult part is to perform step 2, i.e. to
have a controlled way to change the phase of an individual quantum state. This
can be achieved if (for instance ψ〉 is an eigenstate of a Hamiltonian (so that the
phase only depends on the number of periods the beam is left before interference).

An important feature of the geometric phases is that they cannot be absolutely
defined. They are relative; as can be seen from the consideration of the Aharonov-
Bohm experiment they can only be determined if we interfere two beams with
different past history (corresponding to the particles passing through either of
the two slits). This strongly suggests that the basic features of geometric phases
and consequently the role of complex numbers in quantum theory will be more
strongly manifested in a formalism based upon histories.

3. CONSISTENT HISTORIES

The consistent histories approach to quantum theory was developed by
Griffiths (1984), Omnés (1988, 1994), Gell-Mann and Hartle (1990, 1993),
Hartle (1993). The basic object is a history, which corresponds to properties
of the physical system at successive instants of time. A discrete-time history α

will then correspond to a string P̂t1 , P̂t2 , . . . P̂tn of projectors, each labelled by an
instant of time. From them, one can construct the class operator

Ĉα = Û †(t1)P̂t1Û (t1) . . . Û †(tn)P̂tn Û (tn) (5)

where Û (s) = e−iĤ s is the time-evolution operator. The probability for the reali-
sation of this history is

p(α) = T r
(
Ĉ†

αρ̂0Ĉα

)
, (6)

where ρ̂0 is the density matrix describing the system at time t = 0.
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But this expression does not define a probability measure in the space of all
histories, because the Kolmogorov additivity condition cannot be satisfied: if α

and β are exclusive histories, and α ∨ β denotes their conjunction as propositions,
then it is not true that

p(α ∨ β) = p(α) + p(β). (7)

The histories formulation of quantum mechanics does not, therefore, enjoy the
status of a genuine probability theory.

However, an additive probability measure is definable, when we restrict
to particular sets of histories. These are called consistent sets. They are more
conveniently defined through the introduction of a new object: the decoherence
functional. This is a complex-valued function of a pair of histories given by

d(α, β) = T r
(
Ĉ

†
βρ̂0Ĉα

)
. (8)

A set of exclusive and exhaustive alternatives is called consistent, if for all pairs
of different histories α and β, we have

Re d(α, β) = 0. (9)

In that case one can use equation (6) to assign a probability measure to this set.
While the consistent histories interpretation refers to properties of closed

individual systems, the same formalism can be applied in an operational setting
similar to that of the Copenhagen interpretation. In that context the expression (6)
refers to the probability corresponding to a multi-time measurement scheme in
which we determine whether the properties α̂t1 , α̂t2 , . . . , α̂tn are satisfied at times
t1, t2, . . . , tn.

If we consider an operational interpretation of the histories formalism, we
may easily that the off-diagonal elements of the decoherence functional may be
in principle expressed as a special case of the Pancharatnam phase.

Let us assume we have a source S preparing a beam of particles in a state
|ψ〉. After exiting S the particles enter a beam splitter B.S. One subbeam then
enters a sequence of filters αt1 . . . αtn and the other a sequence of filters βt ′1 . . . βt ′m ,
before they are recombined at C. the beam then propagates to a screen, where its
intensity is measured. We repeat this experiment many times, but at each time the
second component of the split beam has to pass through P.O. which performs the
operation of phase change |ψ〉 → eiχ |ψ〉. We, thus, get a function I (χ ), whose
maximum determines a phase that is the argument of the value of the decoherence
functional between the histories (αt1 . . . αtn ) and (βt ′1 , . . . , βt ′m ). The modulus of
the phase of the decoherence functional can easily be determined by the maximum
value of I (see Anastopoulos (2001, 2003) for details).

In fact, it can be shown that the decoherence functional contains all infor-
mation that can be obtained from experiments measuring either probabilities or
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relative phases (Anastopoulos, 2003). The complex-valued temporal correlation
functions of quantum theory can in principle be determined by the measurement of
a sufficiently large number of interference phases as in the experiment described
above. In effect, if one can determine the off-diagonal elements of a decoherence
functional between a history αij = (Pi, t1; Pj , t2) and the trivial history β = 1,
then for the observable A = ∑

i aiPi the time-ordered two-point function will
read

〈At1At2〉Q =
∑
ij

d(αij , 1), (10)

4. AN AXIOMATIC SCHEME FOR QUANTUM THEORY

The discussion above on the importance of geometric phases in demonstrating
the role of complex numbers in quantum theory motivates us to construct an
axiomatic framework for quantum theory, in which the quantum phases plays the
role of a primitive ingredient. As we have indicated before, such a scheme must
be fundamentally based on histories.

Most axiomatic schemes for quantum theory introduce complex numbers at
the level of the basic physical observables: fir example the standard formalism
introduces them in the postulate f a complex Hilbert space; the C∗-algebra formal-
ism postulates an algebra over the field of complex numbers and then introduces
and implements Born’s rule by the introduction of an additive probability measure
over the algebra. In these schemes the introduction of the complex numbers goes
hand in hand with the consideration of non-classical observables, namely through
the representation of physical observables by non-commuting algebraic objects.

Remarkably, the introduction of quantum phases as a primitive ingredient in
an axiomatic formulation allows one to obtain all predictions of quantum theory
from a scheme with classical observables. In other words, if one postulates that
the quantum formalism predicts not only probabilities but also the values of
relative phases between different histories, then it is not necessary to introduce
non-commutative objects as fundamental quantum entities.

We shall next proceed to describe this scheme, which is essentially an adap-
tation of the basic axioms for histories as set out by Hartle (1993), Isham (1994),
Isham and Linden (1994).

4.1. Observables

At the level of observables, the structure of our theory is identical with that
of classical probability theory. That is, we assume the existence of a space 
 of
elementary alternatives. A point of 
 corresponds to the most precise information
one can extract from a measurement of the quantum system. Note, that at this level
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we do not distinguish, whether 
 refers to properties of a systems at one moment
of time or to histories.

The space 
 has to be equipped with some additional structure. In general, a
measurement will yield some information stating that the system was found in a
given subset of 
. But not all subsets of 
 are suitable to incorporate measurement
outcomes. For instance, when we consider position it is physically meaningless
to consider the subset of rational values of position (with respect to some unit).
One, therefore needs to choose a family of subsets C of 
, that correspond to the
coarse-grained information we can obtain about the physical systems. These sets
are often called events. The family C containing the events has to satisfy some
natural mathematical conditions: in mathematical terms C has to be a σ -field. The
relevant conditions are the following

1. 
 ∈ C.

2. ∅ ∈ C.

3. If A ∈ C, then 
 − A ∈ C.

4. If A,B ∈ C, then A ∪ B ∈ C and A ∩ B ∈ C.

5. For countably many An ∈ C, n = 1, 2, . . ., ∪∞
n=1 ∈ C.

Equipping 
 with a σ -field turns it into a measurable space. An observable is a
measurable function on 
, namely one that preserves the σ -field structure. We
shall denote the space of measurable functions to in as F (
).

We will be interested in the case of histories, namely when the sample space

 is a path space, namely a subset of ×t�t , where �t is the space of elementary
alternatives at a specific moment of time. Usually we shall consider that �t is
isomorphic to a space � for all values of t .

4.2. Probabilities

In the axiomatic scheme we present here the basic observables are classical,
not fundamentally different from the ones employed in classical probability theory.
The quantum character is brought in by the introduction of phases as a primitive
ingredient (something that also results to the probability measure being non-
additive). This is achieved by the postulate of a decoherence functional, whose
diagonal elements correspond to probabilities and the off-diagonal to the (in
principle measurable) Pancharatnam phases between the histories. Note that the
present axiomatic scheme is phrased within the Copenhagen interpretation, namely
both probabilities and phases are assumed to refer to the outcomes of concrete
experimental situations.
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A decoherence functional D is a map from C × C → C, such that the fol-
lowing conditions are satisfied

B1. Null triviality: For any A ∈ C, D(∅, A) = 0.
In terms of our interpretation of the off-diagonal elements of the
decoherence functional as corresponding to Pancharatnam phases, there
can be no phase measurement if one of the two beams that have to be
interfered is absent.

B2. Hermiticity: For A,B ∈ C, D(B,A) = D∗(A,B).
Clearly the phase difference between two histories becomes op-
posite if we exchange the sequence, by which these histories are
considered.

B3. Positivity: For any A ∈ C, D(A,A) ≥ 0.
This amounts to the fact that the diagonal elements of the decoherence
functional are interpreted as probabilities (albeit non-additive). Oper-
ationally probabilities are defined by the number of times a particular
event occurred in the ensemble and by definition they can only be
positive.

B4. Normalisation: D(
,
) = 1.
Clearly, if no measurement takes place the intensity of the beam would
never change.

B5. Additivity: If A,B,C ∈ C and A ∩ B = ∅, then D(A ∪ B,C) =
D(A,C) + D(B,C).
There is no intuitive operational reason, why this should be the case. This
property is equivalent to the superposition principle of quantum theory
and we can consider that it is forced upon us by experimental results.
Of course, this is the property that makes the decoherence functional the
natural object to use.

B6. Boundedness: For all A,B ∈ C, |D(A,B)| ≤ 1.

4.3. Equivalence to Standard Quantum Mechanics

The set of axioms above is equivalent to standard quantum theory. This
equivalence is stated in the propositions 1 and 2 that follow–for detailed proofs
see Ref. Anastopoulos (2003).

Proposition 1. All quantum mechanical systems for which a classical phase space
may be identified may be described by the above axiomatic scheme.
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We choose the space � as the classical phase space. If H the single-time
quantum mechanical Hilbert space, introduce coherent states |z〉, z ∈ �.

The decoherence functional takes the following value for two- discrete
time histories corresponding to the projectors |zt1〉〈zt1 |, |zt2〉〈zt2 |, . . . |ztn〉〈ztn | and
|z′

t ′1
〉〈z′

t ′1
|, |z′

t ′2
〉〈z′

t ′2
|, . . . |z′

t ′m
〉〈z′

t ′m
|

Dz0 (z1, t1; z2, t2; . . . ; zn, tn|z′
1, t

′
1; z′

2, t
′
2; . . . ; z′

m, t ′m) =
〈z′

m|e−iH (t ′m−tn)|zn〉〈zn|e−iH (tn−tn−1)|zn−1〉 . . . 〈z2|e−iH (t2−t1)|z1〉
〈z1|e−iH (t1−t0)|z0〉〈z0|e−iH (t0−t ′1)|z′

1〉
〈z′

1|e−iH (t ′1−t ′2)|z′
2〉 . . . 〈z′

m−1|e−iH (t ′m−1−t ′m)|z′
m〉, (11)

where in the above equation the initial state is assumed to be a coherent sate |z0〉.
At the continuous limit (for differentiable paths)

D[z(·), z′(·)] ∼ eiS[z(·)]−iS[z′(·)], (12)

where S = ∫
dt(〈zt |żt 〉 − 〈zt |Ĥ |zt 〉 is the classical phase space action.

It is easy to see from the equation above that if the paths z(·) and z′(·)
have the same endpoints, the form a loop C and D equals the holonomy of a
U (1) connection A on the extended phase space �ext = 
 × 
 (
 = ×t�t ) of
the classical system which includes the time variable t ∈ R as a variable. (For a
particle at a line this connection is A = pdq − H (p, q)dt).

It follows that any quantum mechanical system, in which coherent states can
be defined defines a process on a phase space � that satisfies the axioms 1–6.

We should note at this point that the decoherence functional D, viewed as
a functional on the space of paths 
 has support on non-differentiable paths (the
so-called cylinder sets). For this reason it is not fully specified by its values on the
continuous-time paths. An additional structure is necessary, which is incorporated
in the coherent states propagator 〈z|e−iĤ t |z′〉. This essentially corresponds to the
coarse-graining operation. The reason is the following. To consider coarse-grained
alternatives we must essentially sum over paths; this involves the definition of a
measure on 
. The choice of this measure is dependent upon the properties of
the coherent state propagator (Anastopoulos, 2003; Anastopoulos and Savvidou,
2003).

The axioms 1–6 are more general than the usual axioms defining standard
quantum theory. If, however, we assume that the system also satisfies the Markov
property, it is possible to prove an equivalence. The Markov property roughly
states that if the state of the system (i.e the restricted decoherence functional at
a moment of time) is completely specified, then it contains sufficient information
to determine the state of the system at any subsequent moment of time. The
exact mathematical phrasing of this condition can be shown to be equivalent to
the statement (Anastopoulos, 2003) that the discrete-time decoherence functional
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satisfies the following factorisation condition

D(z0, t0; z1, t1; . . . ; zN, tN |z′
0, t0; z1, t1; . . . ; z′

N, tN ) =
υ(zN, z′

N ; tN |zN−1, z
′
N−1; tN−1) . . . υ(z1, z

′
1; t1|z0, z

′
0; t0)ρ0(z0, z

′
0), (13)

in terms of an initial “state” at t = 0 and a propagator υ(z1, z2; t |z′
1, z

′
2; t ′) that

satisfies‘ the quantum Chapman-Kolmogorov equation:

υ(z1, z
′
1; t |z0, z

′
0; s) =

∫
dzdz′υ(z1, z

′
1; t |z, z′; s ′)υ(z, z′; s ′|z0, z

′
0; s). (14)

We may then prove the following theorem

Proposition 2. Assume we have a system satisfying axioms 1–6, with 
 = ×t�t

that in addition satisfies the Markov property. If in addition

i. the propagator is a smooth function of its arguments and the time entries,

ii. the process is time-homogeneous and time-reversible then we can recon-
struct a quantum mechanical Hilbert space H and the Heisenberg evolu-
tion equations, so that υt (z1, z2, t |z′

1, , z
′
2, t

′) = ψt ′−t (z1|z′
1)ψ∗

t ′−t (z2|z′
2),

with

ψt (z|z) = 〈z|e−iĤ t |z′〉, (15)

where |z〉 is a set of coherent states on the Hilbert space H .

Hence the axioms 1–6 allow a full reproduction of the usual formalism for standard
quantum theory.

4.4. Further Remarks

The framework above does not solve any of the long-standing interpretational
issues of quantum theory; indeed it is essentially cast in the form of the Copen-
hagen interpretation, the main difference being that phases are taken as primitive
ingredients in addition to the probabilities. However, it serves to make two points.
First, it is possible to describe quantum theory in terms of purely commutative
observables and absorb all physical consequences of non-commutativity into the
introduction of the quantum phase as an irreducible element of the formalism.
Quantum logic is therefore not a necessary consequence of the empirical success
of quantum theory.

Second, to obtain the structure of the Hilbert space necessitates the Markov
condition, which presupposes a background causal structure. Hence, standard
quantum mechanics arises as a consequence of the postulate of a background
time. In absence of such a structure, as could be the case in quantum gravity the
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Hilbert space is not necessary or perhaps not even natural. This suggests that a
histories-based framework on quantum gravity may lead to very different results
from those obtained by canonical quantisation—see the discussion in Savvidou
(2004a,b). One such example where this idea may be tested is by attempting the
construction of a quantum version of the growth processes for causal sets discussed
in Rideout and Sorkin (2000) using the present axiomatic scheme.

The equivalence between the axioms 1–6 and standard quantum theory is
based on the assumption that one may find a classical phase space for every
known physical system that is described by quantum theory. While this is straight-
forward for particle systems and bosonic fields, this can not be easily identified
for spinor fields, due to the presence of the canonical anti-commutation relations.
Nonetheless, free spinor fields can be constructed by the Fock method from the
Hilbert space of relativistic particles with half-integer spin, which can be fully de-
scribed in a phase space language–see Souriau (1997) for the construction of the
corresponding phase space. For the case of such particles the construction of a pro-
cess satisfying the axioms 1–6 has been verified Anastopoulos (2004). It is based
upon generalised coherent states of the Poincaré group |X, I, J 〉, the arguments of
which lie on an extended phase space consisting of a point of Minkowski space-
time X, a unit future-directed timelike 4-vector I (normalised 4-momentum) and
a unit spacelike vector J (normalised Pauli-Lubanski vector), such that I · J = 0.

The decoherence functional is constructed as in equation (11) and in the
continuum limit corresponds to the following connection on �ext

A = −MIµdXµ − in

2
[λAεABdµB − λ∗

A′ε
A′B ′

dµ∗
B ′ ],

where λ,µ are two-spinors corresponding to the null tetrad defined by I + J, I −
J respectively.

As a conclusion to this talk we would like to make an important remark
about the way the U(1) symmetry and complex numbers are implemented in the
axiomatic scheme we considered here. The connection (16) is a building block of
the decoherence functional for relativistic particles, using which we may construct
a field-theoretic description. The quantum phase it introduces in the decoherence
functional coincides with the U(1) phase of the fiber bundle λA → Iµ = λ∗σµλ.

This phase is a classical, geometric object appearing naturally in the lightcone’s
structure. On the other hand the quantum phases appearing in the decoherence
functional are objects that may be measured statistically in interference patterns.
Hence apparently the same mathematical object appears in two distinct physical
roles. As the geometric phase is the main reason for the introduction of complex
numbers in quantum theory, this situation brings to mind Penrose’s conjecture
about a relation between the complex numbers in quantum theory and the light-
cone geometry. If anything the considerations in this paper lend plausibility to this
idea.



1498 Anastopoulos

ACKNOWLEDGEMENTS

I would like to thank I. Raptis for the invitation and the opportunity to
present this talk in Glafka. Also many thanks to N. Savvidou for a continuous
discussion and interaction on the topics covered in this talk. Research is supported
by a Reintegration Grant from the European Commission and the Empirikion
Foundation.

REFERENCES

Aharonov, Y. and Bohm, D. (1959). Physical Review 115, 485.
Anandan, J. and Aharonov, Y. (1990). Physical Review Letters 65, 1697.
Anastopoulos, C. (2001). Foundations of Physics 31, 1545.
Anastopoulos, C. (2003). Annals of Physics 303, 270.
Anastopoulos, C. (2004). Journal of Physics A: Mathematical and General 37, 8619.
Anastopoulos, C. and Savvidou, N. (2003). Annals of Physics 308, 329.
Berry, M. V. (1984). Proceedings of the Royal Society of London A392, 45.
Gell-Mann, M. and Hartle, J. B. (1990). Quantum mechanics in the light of quantum cosmology. In

Zurek, W. ed., Complexity, Entropy and the Physics of Information, Addison Wesley, Reading.
Gell-Mann, M. and Hartle, J. B. (1993). Physical Review D47, 3345.
Griffiths, R. B. (1984). Journal of Statistical Physics 36, 219.
Hartle, J. B. (1993). Spacetime quantum mechanics and the quantum mechanics of spacetime. In

Proceedings on the 1992 Les Houches School, Gravitation and Quantisation.
Isham, C. J. (1994). Journal of Mathematical Physics 35, 2157.
Isham, C. J. and Linden, N. (1994). Journal of Mathematical Physics 35, 5452.
Omnès, R. (1988). Journal of Statistical Physics 53, 893.
Omnès, R. (1994). The Interpretation of Quantum Mechanics, Princeton University Press, Princeton.
Pancharatnam, S. (1956). Proceedings of the Industrial Academy of Sciences A 44, 246.
Rideout, D. P. and Sorkin, R. D. (2000). Physical Review D61, 024002.
Savvidou, N. (2004a). Classical and Quantum Gravity 21, 615.
Savvidou, N. (2004b). Classical and Quantum Gravity 21, 631.
Simon, B. (1983). Physical Review Letters 51, 2167.
Souriau, J. M. (1997). Structure of Dynamical Systems: A Symplectic View of Physics, Birkhäuser,
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